Quantum Dots Reveal Shifts in Organic Nitrogen Uptake by Fungi Exposed to Long-Term Nitrogen Enrichment
نویسندگان
چکیده
Anthropogenic nitrogen (N) enrichment can alter N dynamics associated with decomposing plant litter. However, it is unclear to what extent these alterations occur via microbial effects (e.g., changes in gene regulation, physiology, or community composition) versus plant litter effects (e.g., changes in composition of N and C compounds). To isolate microbial effects from plant litter effects, we collected plant litter from long-term N fertilized and control plots, reciprocally inoculated it with microbes from the two treatments, and incubated it in a common field setting for three months. We used quantum dots (QDs) to track fungal uptake of glycine and chitosan. Glycine is a relatively simple organic N compound; chitosan is more complex. We found that microbial and litter origins each contributed to a shift in fungal uptake capacities under N fertilization. Specifically, N fungi preferred glycine over chitosan, but control fungi did not. In comparison, litter effects were more subtle, and manifested as a three-way interaction between litter origin, microbial origin, and type of organic N (glycine versus chitosan). In particular, control fungi tended to target chitosan only when incubated with control litter, while N fungi targeted glycine regardless of litter type. Overall, microbial effects may mediate how N dynamics respond to anthropogenic N enrichment in ecosystems.
منابع مشابه
The brighter side of soils: quantum dots track organic nitrogen through fungi and plants.
Soil microorganisms mediate many nutrient transformations that are central in terrestrial cycling of carbon and nitrogen. However, uptake of organic nutrients by microorganisms is difficult to study in natural systems. We assessed quantum dots (fluorescent nanoscale semiconductors) as a new tool to observe uptake and translocation of organic nitrogen by fungi and plants. We conjugated quantum d...
متن کاملFungi exposed to chronic nitrogen enrichment are less able to decay leaf litter.
Saprotrophic fungi are the primary decomposers of plant litter in temperate forests, and their activity is critical for carbon (C) and nitrogen (N) cycling. Simulated atmospheric N deposition is associated with reduced fungal biomass, shifts in fungal community structure, slowed litter decay, and soil C accumulation. Although rarely studied, N deposition may also result in novel selective press...
متن کاملThe potentiality of the functionalized nitrogen and thiol-doped graphene quantum dots (GQDs-N-S) to stabilize the antibodies in the designing of human chorionic gonadotropin immunosensor
In this study, for the first time, a simple immunosensor for ultrasensitive recognition of Human Chorionic Gonadotropin (hCG) in serum samples was fabricated by exploiting a simple approach. In this method, a low-cost and sensitive immunosensor was fabricated based on QDs-N-S/Au nanoparticles (NPs) modified Screen-Printed Carbon Electrode (SPCE). It seems that, QDs-N-S/Au NPs/ antibody as a bio...
متن کاملAmino Acid Uptake in Arbuscular Mycorrhizal Plants
We examined the extent to which arbuscular mycorrhizal (AM) fungi root improved the acquisition of simple organic nitrogen (ON) compounds by their host plants. In a greenhouse-based study, we used quantum dots (fluorescent nanoparticles) to assess uptake of each of the 20 proteinaceous amino acids by AM-colonized versus uncolonized plants. We found that AM colonization increased uptake of pheny...
متن کاملQuantum Dots: A New Technique to Assess Mycorrhizal Contributions to Plant Nitrogen Across a Fire-Altered Landscape
The overarching objective of our research is to develop a better understanding of the contributions of mycorrhizal fungi (root symbionts) to the nitrogen (N) nutrition of plants in habitat fragments in Southern California. We focused on habitat fragmentation because it is one of the most striking aspects of global change operating in Southern California. About 90% of coastal sage scrub habitat,...
متن کامل